{ "id": "2312.03663", "version": "v1", "published": "2023-12-06T18:33:00.000Z", "updated": "2023-12-06T18:33:00.000Z", "title": "$H$-percolation with a random $H$", "authors": [ "Zsolt Bartha", "Brett Kolesnik", "Gal Kronenberg" ], "categories": [ "math.CO", "math.PR" ], "abstract": "In $H$-percolation, we start with an Erd\\H{o}s--R\\'enyi graph ${\\mathcal G}_{n,p}$ and then iteratively add edges that complete copies of $H$. The process percolates if all edges missing from ${\\mathcal G}_{n,p}$ are eventually added. We find the critical threshold $p_c$ when $H={\\mathcal G}_{k,1/2}$ is uniformly random, solving a problem of Balogh, Bollob\\'as and Morris.", "revisions": [ { "version": "v1", "updated": "2023-12-06T18:33:00.000Z" } ], "analyses": { "subjects": [ "05C35", "05C80", "05C99", "60K35", "68Q80" ], "keywords": [ "percolation", "iteratively add edges", "complete copies", "process percolates", "critical threshold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }