{ "id": "2312.02628", "version": "v1", "published": "2023-12-05T10:08:49.000Z", "updated": "2023-12-05T10:08:49.000Z", "title": "Diophantine approximation with prime denominator in quadratic number fields under GRH", "authors": [ "Stephan Baier", "Sourav Das", "Esrafil Ali Molla" ], "comment": "30 pages", "categories": [ "math.NT" ], "abstract": "Matom\\\"aki proved that if $\\alpha\\in \\mathbb{R}$ is irrational, then there are infinitely many primes $p$ such that $|\\alpha-a/p|\\le p^{-4/3+\\varepsilon}$ for a suitable integer a. In this paper, we extend this result to all quadratic number fields under the condition that the Grand Riemann Hypothesis holds for their Hecke $L$-functions.", "revisions": [ { "version": "v1", "updated": "2023-12-05T10:08:49.000Z" } ], "analyses": { "subjects": [ "11J71", "11R11", "11R42", "11R44" ], "keywords": [ "quadratic number fields", "prime denominator", "diophantine approximation", "grand riemann hypothesis holds", "irrational" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable" } } }