{ "id": "2312.02414", "version": "v1", "published": "2023-12-05T01:08:36.000Z", "updated": "2023-12-05T01:08:36.000Z", "title": "Bounds on the gaps in Kronecker sequences (and a little bit more)", "authors": [ "Seungki Kim" ], "categories": [ "math.NT", "math.DS" ], "abstract": "We provide bounds on the sizes of the gaps -- defined broadly -- in the set $\\{k_1\\vbeta_1 + \\ldots + k_n\\vbeta_n \\mbox{ (mod 1)} : k_i \\in \\Z \\cap (0,Q^\\frac{1}{n}]\\}$ for generic $\\vbeta_1, \\ldots, \\vbeta_n \\in \\R^m$ and all sufficiently large $Q$. We also introduce a related problem in Diophantine approximation, which we believe is of independent interest.", "revisions": [ { "version": "v1", "updated": "2023-12-05T01:08:36.000Z" } ], "analyses": { "keywords": [ "kronecker sequences", "little bit", "diophantine approximation", "independent interest", "related problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }