{ "id": "2312.01695", "version": "v1", "published": "2023-12-04T07:33:38.000Z", "updated": "2023-12-04T07:33:38.000Z", "title": "Quantitative Destruction of Lagrangian Torus", "authors": [ "Lin Wang" ], "categories": [ "math.DS" ], "abstract": "Let $P_N$ be a trigonometric polynomial of degree $N$ and satisfy $\\|P_N\\|_{C^r}\\leq \\epsilon$. If $P_N$ destroys the Lagrangian torus with the rotation vector $\\omega$ of an integrable Hamiltonian system, then {what are the relation among $\\epsilon$, $N$, $r$ and the arithmetic property of $\\omega$}? By addressing this, we provide quantitatively higher dimensional generalizations of the remarkable results on destruction of invariant circles for the area-preserving twist map by Herman [21] in 1983 and Mather [28] in 1988.", "revisions": [ { "version": "v1", "updated": "2023-12-04T07:33:38.000Z" } ], "analyses": { "keywords": [ "lagrangian torus", "quantitative destruction", "quantitatively higher dimensional generalizations", "arithmetic property", "area-preserving twist map" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }