{ "id": "2312.01319", "version": "v1", "published": "2023-12-03T08:45:32.000Z", "updated": "2023-12-03T08:45:32.000Z", "title": "Erdős similarity problem via bi-Lipschitz embedding", "authors": [ "De-jun Feng", "Chun-Kit Lai", "Ying Xiong" ], "categories": [ "math.CA", "math.MG" ], "abstract": "The Erd\\H{o}s similarity conjecture asserted that an infinite set of real numbers cannot be affinely embedded into every measurable set of positive Lebesgue measure. The problem is still open, in particular for all fast decaying sequences. In this paper, we relax the problem to the bi-Lipschitz embedding and obtain some sharp criteria about the bi-Lipschitz Erd\\H{o}s similarity problem for strictly decreasing sequences.", "revisions": [ { "version": "v1", "updated": "2023-12-03T08:45:32.000Z" } ], "analyses": { "subjects": [ "28A78", "28A05", "30L05", "11K55" ], "keywords": [ "erdős similarity problem", "bi-lipschitz embedding", "sharp criteria", "real numbers", "similarity conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }