{ "id": "2312.01182", "version": "v1", "published": "2023-12-02T17:07:49.000Z", "updated": "2023-12-02T17:07:49.000Z", "title": "Thresholds for patterns in random permutations", "authors": [ "David Bevan", "Dan Threlfall" ], "comment": "23 pages", "categories": [ "math.CO" ], "abstract": "We explore how the asymptotic structure of a random permutation of $[n]$ with $m$ inversions evolves, as $m$ increases, establishing thresholds for the appearance and disappearance of any classical, consecutive or vincular pattern. The threshold for the appearance of a classical pattern depends on the greatest number of inversions in any of its sum indecomposable components.", "revisions": [ { "version": "v1", "updated": "2023-12-02T17:07:49.000Z" } ], "analyses": { "subjects": [ "05A05", "60C05" ], "keywords": [ "random permutation", "asymptotic structure", "inversions evolves", "greatest number", "sum indecomposable components" ], "note": { "typesetting": "TeX", "pages": 23, "language": "en", "license": "arXiv", "status": "editable" } } }