{ "id": "2312.00465", "version": "v1", "published": "2023-12-01T10:01:15.000Z", "updated": "2023-12-01T10:01:15.000Z", "title": "Uniqueness and nondegeneracy of ground states for the Schrödinger-Newton equation with power nonlinearity", "authors": [ "Huxiao Luo" ], "comment": "arXiv admin note: text overlap with arXiv:2112.05869 by other authors", "categories": [ "math.AP" ], "abstract": "In this article, we study the Schr\\\"{o}dinger-Newton equation \\begin{equation} -\\Delta u+\\lambda u=\\frac{1}{4\\pi}\\left(\\frac{1}{|x|}\\star u^{2}\\right)u+|u|^{q-2}u \\quad \\text{in}~\\mathbb{R}^3, \\end{equation} where $\\lambda\\in\\mathbb{R}_+$, $q\\in (2,3)\\cup(3, 6)$. By investigating limit profiles of ground states as $\\lambda\\to0^+$ or $\\lambda\\to+\\infty$, we prove the uniqueness of ground states. By the action of the linearized eqaution with respect to decomposition into spherical harmonics, we obtain the nondegeneracy of ground states.", "revisions": [ { "version": "v1", "updated": "2023-12-01T10:01:15.000Z" } ], "analyses": { "keywords": [ "ground states", "schrödinger-newton equation", "power nonlinearity", "uniqueness", "nondegeneracy" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }