{ "id": "2311.18058", "version": "v1", "published": "2023-11-29T20:09:25.000Z", "updated": "2023-11-29T20:09:25.000Z", "title": "Phase Transitions in the semi-infinite Ising model with a decaying field", "authors": [ "Rodrigo Bissacot", "João Maia" ], "comment": "16 pages, 6 figures", "categories": [ "math-ph", "cond-mat.stat-mech", "math.MP", "math.PR" ], "abstract": "We study the semi-infinite Ising model with an external field $h_i = \\lambda |i_d|^{-\\delta}$, $\\lambda$ is the wall influence, and $\\delta>0$. This external field decays as it gets further away from the wall. We are able to show that when $\\delta>1$ and $\\beta > \\beta_c(d)$, there exists a critical value $0< \\lambda_c:=\\lambda_c(\\delta,\\beta)$ such that, for $\\lambda<\\lambda_c$ there is phase transition and for $\\lambda>\\lambda_c$ we have uniqueness of the Gibbs state. In addition, when $\\delta<1$, we have only one Gibbs state for any positive $\\beta$ and $\\lambda$.", "revisions": [ { "version": "v1", "updated": "2023-11-29T20:09:25.000Z" } ], "analyses": { "subjects": [ "82B05", "82B20", "82B26" ], "keywords": [ "semi-infinite ising model", "phase transition", "decaying field", "gibbs state", "external field decays" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }