{ "id": "2311.15644", "version": "v1", "published": "2023-11-27T09:16:12.000Z", "updated": "2023-11-27T09:16:12.000Z", "title": "Subdifferential calculus and ideal solutions for set optimization problems", "authors": [ "Marius Durea", "Elena-Andreea Florea" ], "categories": [ "math.OC" ], "abstract": "We explore the possibility to derive basic calculus rules for some subdifferential constructions associated to set-valued maps between normed vector spaces. Then, we use these results in order to write optimality conditions for a special kind of solutions for set optimization problems.", "revisions": [ { "version": "v1", "updated": "2023-11-27T09:16:12.000Z" } ], "analyses": { "keywords": [ "set optimization problems", "subdifferential calculus", "ideal solutions", "derive basic calculus rules", "write optimality conditions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }