{ "id": "2311.15256", "version": "v1", "published": "2023-11-26T10:00:55.000Z", "updated": "2023-11-26T10:00:55.000Z", "title": "On the $L_{\\infty}$-bialgebra structure of the rational homotopy groups $π_{*}(ΩΣY)\\otimes \\mathbb{Q}$", "authors": [ "Samson Saneblidze" ], "comment": "7 pages", "categories": [ "math.AT" ], "abstract": "We introduce the notion of an $L_{\\infty}$-bialgebra structure on a vector space. We show that the rational homotopy groups $\\pi_{*}(\\Omega \\Sigma Y)\\otimes \\mathbb{Q}$ admit such a structure for the loop space $\\Omega \\Sigma Y$ of a suspension $\\Sigma Y$ that characterizes $Y$ up to rational homotopy equivalence.", "revisions": [ { "version": "v1", "updated": "2023-11-26T10:00:55.000Z" } ], "analyses": { "subjects": [ "55P35", "55S05" ], "keywords": [ "rational homotopy groups", "bialgebra structure", "rational homotopy equivalence", "vector space", "loop space" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }