{ "id": "2311.14937", "version": "v1", "published": "2023-11-25T05:53:50.000Z", "updated": "2023-11-25T05:53:50.000Z", "title": "Trigonometric polynomials with frequencies in the set of cubes", "authors": [ "Mikhail R. Gabdullin", "Sergei V. Konyagin" ], "comment": "5 pages", "categories": [ "math.CA" ], "abstract": "We prove that for any $\\epsilon>0$ and any trigonometric polynomial $f$ with frequencies in the set $\\{n^3: N \\leq n\\leq N+N^{2/3-\\epsilon}\\}$, one has $$ \\|f\\|_4 \\ll \\epsilon^{-1/4}\\|f\\|_2 $$ with implied constant being absolute. We also show that the set $\\{n^3: N\\leq n\\leq N+(0.5N)^{1/2}\\}$ is a Sidon set.", "revisions": [ { "version": "v1", "updated": "2023-11-25T05:53:50.000Z" } ], "analyses": { "keywords": [ "trigonometric polynomial", "frequencies", "sidon set" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable" } } }