{ "id": "2311.14184", "version": "v1", "published": "2023-11-23T20:05:03.000Z", "updated": "2023-11-23T20:05:03.000Z", "title": "Mean Values and Quantum Variance for Degenerate Eisenstein Series of Higher Rank", "authors": [ "Dimitrios Chatzakos", "Corentin Darreye", "Ikuya Kaneko" ], "comment": "20 pages. LaTeX2e", "categories": [ "math.NT", "math-ph", "math.MP" ], "abstract": "We study the mean value and quantum variance for ${\\mathrm{SL}_{n}({\\mathbb Z})}$ degenerate maximal parabolic Eisenstein series. We first establish a mean value result for the inner products \\begin{equation*} \\mu_{t, n}(f) = \\int_{\\mathrm{SL}_{n}(\\mathbb{Z}) \\backslash \\mathfrak{h}^{n}} f(z) \\left|E_{(n-1, 1)} \\left(z, \\frac{1}{2}+it, \\mathbf{1} \\right) \\right|^{2} d\\mu(z) \\end{equation*} with $f$ in a restricted space of incomplete parabolic Eisenstein series. Our estimate breaks the barrier with a polynomial power saving beyond the prediction of the Generalised Lindel\\\"{o}f Hypothesis. Moreover, we prove a quantum variance formula for $\\mu_{t, n}(f)$. This paper builds on the work of Zhang (2019) on quantum unique ergodicity for $\\mathrm{SL}_{n}({\\mathbb{Z}})$ degenerate Eisenstein series as well as the work of Huang (2021) on quantum variance for $\\mathrm{SL}_{2}({\\mathbb{Z}})$ Eisenstein series.", "revisions": [ { "version": "v1", "updated": "2023-11-23T20:05:03.000Z" } ], "analyses": { "subjects": [ "11F12", "11F72", "58J51", "81Q50" ], "keywords": [ "degenerate eisenstein series", "quantum variance", "higher rank", "degenerate maximal parabolic eisenstein series", "incomplete parabolic eisenstein series" ], "note": { "typesetting": "LaTeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable" } } }