{ "id": "2311.14021", "version": "v1", "published": "2023-11-23T14:21:39.000Z", "updated": "2023-11-23T14:21:39.000Z", "title": "The fourth positive element in the greedy $B_h$-set", "authors": [ "Melvyn B. Nathanson", "Kevin O'Bryant" ], "comment": "7 pages", "categories": [ "math.NT", "math.CO" ], "abstract": "For $h \\geq 1$, a $B_h$-set is a set of integers such that every integer $n$ has at most one representation in the form $n = a_{i_1} + \\cdots + a_{i_h}$, where $a_{i_r} \\in A$ for all $r = 1,\\ldots, h$ and $a_{i_1} \\leq \\ldots \\leq a_{i_h}$. The greedy $B_h$-set is the infinite set of nonnegative integers $\\{a_0(h), a_1(h), a_2(h), \\ldots \\}$ constructed as follows: If $a_0(h) = 0$ and $\\{a_0(h), a_1(h), a_2(h), \\ldots, a_k(h) \\}$ is a $B_h$-set, then $a_{k+1}(h)$ is the least positive integer such that $\\{a_0(h), a_1(h), a_2(h), \\ldots, a_k(h), a_{k+1}(h) \\}$ is a $B_h$-set. Then $a_1(h) = 1$, $a_2(h) = h+1$, and $a_3(h) = h^2+h+1$ for all $h$. This paper proves that $a_4(h)$, the fourth term of the greedy $B_h$-set is $\\left( h^3 + 3h^2 + 3h + 1\\right) /2$ if $h$ is odd and $\\left( h^3 + 2h^2 + 3h + 2\\right) /2$ if $h$ is even.", "revisions": [ { "version": "v1", "updated": "2023-11-23T14:21:39.000Z" } ], "analyses": { "subjects": [ "11B13", "11B34", "11B75", "11P99" ], "keywords": [ "fourth positive element", "infinite set", "fourth term", "nonnegative integers" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }