{ "id": "2311.13560", "version": "v1", "published": "2023-11-22T18:10:55.000Z", "updated": "2023-11-22T18:10:55.000Z", "title": "Inverse energy cascade in ocean macroscopic turbulence: Kolmogorov self-similarity in surface drifter observations and Richardson-Obhukov constant", "authors": [ "J. Dräger-Dietel", "A. Griesel" ], "comment": "6 pages, 5 figures", "categories": [ "physics.flu-dyn" ], "abstract": "We combine two point velocity and position data from surface drifter observations in the Benguela upwelling region off the coast of Namibia. The compensated third order longitudinal velocity structure function $\\left\\langle{\\Delta u_{\\ell}^{\\rm 3}}\\right\\rangle/s$ shows a positive plateau for inertial separations $s$ roughly between $9~\\rm{km}$ and $120~\\rm{km}$ revealing an inverse energy cascade with energy transfer rate $\\varepsilon\\simeq 1.2 \\pm 0.1 \\cdot 10^{-7} m^3/s^2$. Deviations from Gaussianity of the corresponding probability distribution $P(\\Delta u_{\\ell} |s)$ of two-point velocity increments $\\Delta u_{\\ell}$ for given pair separation $s$ show up in the n$^{th}$ antisymetric structure functions $S_{-}^{(n)}(r)=\\int u^n(P(u)-P(-u)d u$, which scale in agreement with Kolmogorov's prediction, $S_{-}^{(n)}(r)\\sim r^{(n/3)}$, for $n=2,4,6$. The combination of $\\varepsilon$ with Richardson dispersion $\\left\\langle s^2(t)\\right\\rangle=g\\varepsilon t^3$, where $\\left\\langle s^2(t)\\right\\rangle$ is mean squared pair separation at time $ t$, reveals a Richardson-Obhukov constant of $g\\simeq 0.11\\pm 0.03$.", "revisions": [ { "version": "v1", "updated": "2023-11-22T18:10:55.000Z" } ], "analyses": { "keywords": [ "inverse energy cascade", "surface drifter observations", "ocean macroscopic turbulence", "richardson-obhukov constant", "third order longitudinal velocity" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }