{ "id": "2311.13554", "version": "v1", "published": "2023-11-22T17:55:23.000Z", "updated": "2023-11-22T17:55:23.000Z", "title": "A discrete mean value of the Riemann zeta function", "authors": [ "Kübra Benli", "Ertan Elma", "Nathan Ng" ], "comment": "42 pages, comments welcome", "categories": [ "math.NT" ], "abstract": "In this work, we estimate the sum \\begin{align*} \\sum_{0 < \\Im(\\rho) \\leq T} \\zeta(\\rho+\\alpha)X(\\rho) Y(1\\!-\\! \\rho) \\end{align*} over the nontirival zeros $\\rho$ of the Riemann zeta funtion where $\\alpha$ is a complex number with $\\alpha\\ll 1/\\log T$ and $X(\\cdot)$ and $Y(\\cdot)$ are some Dirichlet polynomials. Moreover, we estimate the discrete mean value above for higher derivatives where $\\zeta(\\rho+\\alpha)$ is replaced by $\\zeta^{(m)}(\\rho)$ for all $m\\in\\mathbb{N}$. The formulae we obtain generalize a number of previous results in the literature. As an application, assuming the Riemann Hypothesis we obtain the lower bound \\begin{align*} \\sum_{0 < \\Im(\\rho) < T} | \\zeta^{(m)}(\\rho)|^{2k} \\gg T(\\log T)^{k^2+2km+1} \\quad \\quad (k,m\\in\\mathbb{N}) \\end{align*} which was previously known under the Generalized Riemann Hypothesis, in the case $m=1$.", "revisions": [ { "version": "v1", "updated": "2023-11-22T17:55:23.000Z" } ], "analyses": { "subjects": [ "11M06", "11M26", "11N37" ], "keywords": [ "discrete mean value", "riemann zeta function", "riemann zeta funtion", "generalized riemann hypothesis", "complex number" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable" } } }