{ "id": "2311.13451", "version": "v1", "published": "2023-11-22T15:16:33.000Z", "updated": "2023-11-22T15:16:33.000Z", "title": "Infinite-dimensional flats in the space of positive metrics on an ample line bundle", "authors": [ "Reboulet Rémi", "Witt Nyström David" ], "categories": [ "math.DG", "math.AG" ], "abstract": "We show that any continuous positive metric on an ample line bundle L lies at the apex of many infinite-dimensional Mabuchi-flat cones. More precisely, given any bounded graded filtration F of the section ring of L, the set of bounded decreasing convex functions on the support of the Duistermaat--Heckman measure of F embeds L^p-isometrically into the space of bounded positive metrics on L with respect to Darvas' d_p distance for all p\\in[1,\\infty), and in particular with respect to the Mabuchi metric (p=2).", "revisions": [ { "version": "v1", "updated": "2023-11-22T15:16:33.000Z" } ], "analyses": { "keywords": [ "ample line bundle", "positive metric", "infinite-dimensional flats", "infinite-dimensional mabuchi-flat cones", "duistermaat-heckman measure" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }