{ "id": "2311.12911", "version": "v1", "published": "2023-11-21T17:00:57.000Z", "updated": "2023-11-21T17:00:57.000Z", "title": "Universal quadratic forms and Dedekind zeta functions", "authors": [ "Vítězslav Kala", "Mentzelos Melistas" ], "comment": "12 pages. Preprint", "categories": [ "math.NT" ], "abstract": "We study universal quadratic forms over totally real number fields using Dedekind zeta functions. In particular, we prove an explicit upper bound for the rank of universal quadratic forms over a given number field $K$, under the assumption that the codifferent of $K$ is generated by a totally positive element. Motivated by a possible path to remove that assumption, we also investigate the smallest number of generators for the positive part of ideals in totally real numbers fields.", "revisions": [ { "version": "v1", "updated": "2023-11-21T17:00:57.000Z" } ], "analyses": { "subjects": [ "11E12", "11E20", "11H06" ], "keywords": [ "dedekind zeta functions", "study universal quadratic forms", "totally real number fields", "totally real numbers fields", "explicit upper bound" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }