{ "id": "2311.12254", "version": "v1", "published": "2023-11-21T00:26:38.000Z", "updated": "2023-11-21T00:26:38.000Z", "title": "A Counterexample to a Question on Grothendieck Groups of Schemes", "authors": [ "Amal Mattoo" ], "comment": "7 pages", "categories": [ "math.AG" ], "abstract": "If an element of the Grothendieck group of the derived category of a scheme is locally represented by perfect complexes, then can the original element be represented by a perfect complex? We provide a counterexample on a projective variety of dimension 2, as well as a counterexample on a thickening of a Dedekind domain.", "revisions": [ { "version": "v1", "updated": "2023-11-21T00:26:38.000Z" } ], "analyses": { "subjects": [ "14F08", "19A99", "13D15" ], "keywords": [ "grothendieck group", "counterexample", "perfect complex", "dedekind domain" ], "note": { "typesetting": "TeX", "pages": 7, "language": "en", "license": "arXiv", "status": "editable" } } }