{ "id": "2311.09949", "version": "v1", "published": "2023-11-16T15:05:25.000Z", "updated": "2023-11-16T15:05:25.000Z", "title": "2-peaks cluster solutions to the nonlinear Schrödinger-Bopp-Podolsky system", "authors": [ "Gustavo de Paula Ramos" ], "comment": "21 pages; comments are welcome", "categories": [ "math.AP" ], "abstract": "Suppose that $z_0$ is a local strict minimum point of $V \\colon \\mathbb{R}^3 \\to ]0, \\infty[$ and $V$ is adequately flat around $z_0$. We employ Lyapunov-Schmidt reduction to prove that if $\\epsilon > 0$ is sufficiently small, then the nonlinear Schr\\\"odinger-Bopp-Podolsky system \\[ \\begin{cases} -\\epsilon^2 \\Delta u + (V + \\phi) u = u |u|^{p-1}; \\newline \\Delta^2 \\phi - \\Delta \\phi = 4 \\pi u^2 \\end{cases} ~\\text{in}~\\mathbb{R}^3 \\] has a $2$-peaks solution and the corresponding peaks converge to $z_0$ as $\\epsilon \\to 0^+$, where $1 < p < 5$ and our unknowns are $u, \\phi\\colon\\mathbb{R}^3\\to\\mathbb{R}$.", "revisions": [ { "version": "v1", "updated": "2023-11-16T15:05:25.000Z" } ], "analyses": { "keywords": [ "nonlinear schrödinger-bopp-podolsky system", "cluster solutions", "local strict minimum point", "employ lyapunov-schmidt reduction", "peaks solution" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }