{ "id": "2311.09399", "version": "v1", "published": "2023-11-15T21:52:15.000Z", "updated": "2023-11-15T21:52:15.000Z", "title": "Tight lower bound on $|A+λA|$ for algebraic integer $λ$", "authors": [ "D. Krachun", "F. Petrov" ], "categories": [ "math.CO" ], "abstract": "We prove an asymptotically tight lower bound on $|A+\\lambda A|$ for $A\\subset \\mathbb{C}$ and algebraic integer $\\lambda$. The proof combines strong version of Freiman's theorem, structural theorem on dense subsets of a hypercubic lattice and a generalisation of the continuous result on tight bound for the measure of $K+\\tau K$ for a compact subset $K\\subset \\mathbb{R}^d$ of unit Lebesgue measure and a fixed linear operator $\\tau\\colon\\mathbb{R}^d\\to \\mathbb{R}^d$, obtained in our previous work.", "revisions": [ { "version": "v1", "updated": "2023-11-15T21:52:15.000Z" } ], "analyses": { "subjects": [ "11B13" ], "keywords": [ "algebraic integer", "asymptotically tight lower bound", "unit lebesgue measure", "dense subsets", "fixed linear operator" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }