{ "id": "2311.09317", "version": "v1", "published": "2023-11-15T19:23:08.000Z", "updated": "2023-11-15T19:23:08.000Z", "title": "Connectivity threshold for superpositions of Bernoulli random graphs. II", "authors": [ "Mindaugas Bloznelis", "Dominykas Marma", "Rimantas Vaicekauskas" ], "categories": [ "math.PR", "math.CO" ], "abstract": "Let $G_1,\\dots, G_m$ be independent Bernoulli random subgraphs of the complete graph ${\\cal K}_n$ having variable sizes $X_1,\\dots, X_m\\in \\{0,1,2,\\dots\\}$ and densities $Q_1,\\dots, Q_m\\in [0,1]$. Letting $n,m\\to+\\infty$ we establish the connectivity threshold for the union $\\cup_{i=1}^mG_i$ defined on the vertex set of ${\\cal K}_n$. Assuming that $(X_1,Q_1), (X_2,Q_2),\\dots, (X_m,Q_m)$ are independent identically distributed bivariate random variables and $\\ln n -\\frac{m}{n}E\\bigl(X_1(1-(1-Q_1)^{|X_1-1|}\\bigr)\\to c$ we show that $P\\{\\cup_{i=1}^mG_i$ is connected$\\}\\to e^{-e^c}$.The result extends to the case of non-identically distributed random variables $(X_1,Q_1),\\dots, (X_m,Q_m)$ as well.", "revisions": [ { "version": "v1", "updated": "2023-11-15T19:23:08.000Z" } ], "analyses": { "subjects": [ "05C80", "05C82", "05C40" ], "keywords": [ "bernoulli random graphs", "connectivity threshold", "independent bernoulli random subgraphs", "superpositions", "identically distributed bivariate random variables" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }