{ "id": "2311.08560", "version": "v1", "published": "2023-11-14T21:43:24.000Z", "updated": "2023-11-14T21:43:24.000Z", "title": "Linear Colouring of Binomial Random Graphs", "authors": [ "Austin Eide", "Paweł Prałat" ], "categories": [ "math.CO", "cs.DM" ], "abstract": "We investigate the linear chromatic number $\\chi_{\\text{lin}}(G(n,p))$ of the binomial random graph $G(n,p)$ on $n$ vertices in which each edge appears independently with probability $p=p(n)$. For dense random graphs ($np \\to \\infty$ as $n \\to \\infty$), we show that asymptotically almost surely $\\chi_{\\text{lin}}(G(n,p)) \\ge n (1 - O( (np)^{-1/2} ) ) = n(1-o(1))$. Understanding the order of the linear chromatic number for subcritical random graphs ($np < 1$) and critical ones ($np=1$) is relatively easy. However, supercritical sparse random graphs ($np = c$ for some constant $c > 1$) remain to be investigated.", "revisions": [ { "version": "v1", "updated": "2023-11-14T21:43:24.000Z" } ], "analyses": { "keywords": [ "binomial random graph", "linear chromatic number", "linear colouring", "supercritical sparse random graphs", "dense random graphs" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }