{ "id": "2311.06676", "version": "v1", "published": "2023-11-11T22:22:04.000Z", "updated": "2023-11-11T22:22:04.000Z", "title": "The universal cover of the real projective line", "authors": [ "Jack Morava" ], "categories": [ "math.GT" ], "abstract": "We construct an interesting topological cover of the multiplicative group of the real line, related to Tate's elliptic curve with $q = e^\\pi$. We use the language of homological algebra, 2D Lorentz geometry and high-school trigonometry; the intent is expository but the suggested applications may be unusual.", "revisions": [ { "version": "v1", "updated": "2023-11-11T22:22:04.000Z" } ], "analyses": { "subjects": [ "54H11", "55N22" ], "keywords": [ "real projective line", "universal cover", "tates elliptic curve", "2d lorentz geometry", "high-school trigonometry" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }