{ "id": "2311.03740", "version": "v1", "published": "2023-11-07T05:50:55.000Z", "updated": "2023-11-07T05:50:55.000Z", "title": "Reductions of semi-stable representations using the Iwahori mod $p$ Local Langlands Correspondence", "authors": [ "Anand Chitrao", "Eknath Ghate" ], "categories": [ "math.NT" ], "abstract": "We determine the mod $p$ reductions of all two-dimensional semi-stable representations $V_{k,\\mathcal{L}}$ of the Galois group of $\\mathbb{Q}_p$ of weights $3 \\leq k \\leq p+1$ and $\\mathcal{L}$-invariants $\\mathcal{L}$ for primes $p \\geq 5$. In particular, we describe the constants appearing in the unramified characters completely. The proof involves computing the reduction of Breuil's $\\mathrm{GL}_2(\\mathbb{Q}_p)$-Banach space $\\tilde{B}(k,\\mathcal{L})$, by studying certain logarithmic functions using background material developed by Colmez, and then applying an Iwahori theoretic version of the mod $p$ Local Langlands Correspondence.", "revisions": [ { "version": "v1", "updated": "2023-11-07T05:50:55.000Z" } ], "analyses": { "subjects": [ "11F80" ], "keywords": [ "local langlands correspondence", "iwahori mod", "iwahori theoretic version", "galois group", "banach space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }