{ "id": "2311.01124", "version": "v1", "published": "2023-11-02T10:12:14.000Z", "updated": "2023-11-02T10:12:14.000Z", "title": "A generalization of p-convexity and q-concavity on Banach lattices", "authors": [ "Fernando Galaz-Fontes", "José Luis Hernández-Barradas" ], "comment": "25 pages, currently in peer review phase at Positivity Journal", "categories": [ "math.FA" ], "abstract": "In this paper, considering a real Banach sequence lattice Y instead of a Lebesgue sequence space $l_p$ we generalize p-convexity of a linear operator $T:E\\to X$, where E is a Banach space and X is a Banach lattice. Then we prove that basic properties of p-convexity remain valid for Y-convex linear operators. Analogous generalizations are given for q-concavity and p-summability and composition properties between these operators are analyzed.", "revisions": [ { "version": "v1", "updated": "2023-11-02T10:12:14.000Z" } ], "analyses": { "subjects": [ "46B42", "47A30", "47B10" ], "keywords": [ "banach lattice", "generalization", "q-concavity", "real banach sequence lattice", "y-convex linear operators" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }