{ "id": "2311.01087", "version": "v1", "published": "2023-11-02T08:54:02.000Z", "updated": "2023-11-02T08:54:02.000Z", "title": "Hyperbolic isometries of the ne curve graph of higher genus surfaces", "authors": [ "Pierre-Antoine Guihéneuf", "Emmanuel Militon" ], "categories": [ "math.DS", "math.GR", "math.GT" ], "abstract": "We prove that for a homeomorphism f that is isotopic to the identity on a closed hyperbolic surface, the following are equivalent: * f acts hyperbolically on the fine curve graph; * f is isotopic to a pseudo-Anosov map relative to a finite f-invariant set; * the ergodic homological rotation set of f has nonempty interior.", "revisions": [ { "version": "v1", "updated": "2023-11-02T08:54:02.000Z" } ], "analyses": { "keywords": [ "higher genus surfaces", "hyperbolic isometries", "fine curve graph", "finite f-invariant set", "ergodic homological rotation set" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }