{ "id": "2310.19604", "version": "v2", "published": "2023-10-30T14:58:15.000Z", "updated": "2024-08-28T02:16:21.000Z", "title": "Hybrid Bifurcations: Periodicity from Eliminating a Line of Equilibria", "authors": [ "Alejandro López-Nieto", "Phillipo Lappicy", "Nicola Vassena", "Hannes Stuke", "Jia-Yuan Dai" ], "comment": "Change of title from v1, typos corrected", "categories": [ "math.DS", "math.CA" ], "abstract": "We describe a new mechanism that triggers periodic orbits in smooth dynamical systems. To this end, we introduce the concept of hybrid bifurcations: Such bifurcations occur when a line of equilibria with an exchange point of normal stability vanishes. Our main result is the existence and stability criteria of periodic orbits that bifurcate from breaking a line of equilibria. As an application, we obtain stable periodic coexistent solutions in an ecosystem for two competing predators with Holling's type II functional response.", "revisions": [ { "version": "v2", "updated": "2024-08-28T02:16:21.000Z" } ], "analyses": { "subjects": [ "34C20", "34C25", "34D20", "37G10", "37J40", "92D25" ], "keywords": [ "hybrid bifurcations", "equilibria", "periodicity", "triggers periodic orbits", "stable periodic coexistent solutions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }