{ "id": "2310.18925", "version": "v1", "published": "2023-10-29T07:32:59.000Z", "updated": "2023-10-29T07:32:59.000Z", "title": "Total positivity for matroid Schubert varieties", "authors": [ "Xuhua He", "Connor Simpson", "Kaitao Xie" ], "comment": "Comments welcome!", "categories": [ "math.CO", "math.AG" ], "abstract": "We define the totally nonnegative matroid Schubert variety $\\mathcal Y_V$ of a linear subspace $V \\subset \\mathbb R^n$. We show that $\\mathcal Y_V$ is a regular CW complex homeomorphic to a closed ball, with strata indexed by pairs of acyclic flats of the oriented matroid of $V$. This closely resembles the regularity theorem for totally nonnegative generalized flag varieties. As a corollary, we obtain a regular CW structure on the real matroid Schubert variety of $V$.", "revisions": [ { "version": "v1", "updated": "2023-10-29T07:32:59.000Z" } ], "analyses": { "subjects": [ "14P25", "05B35", "20G20" ], "keywords": [ "total positivity", "nonnegative generalized flag varieties", "real matroid schubert variety", "regular cw complex homeomorphic", "totally nonnegative matroid schubert variety" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }