{ "id": "2310.16558", "version": "v1", "published": "2023-10-25T11:23:32.000Z", "updated": "2023-10-25T11:23:32.000Z", "title": "A multiplicity formula for the Milnor number of smoothable curves", "authors": [ "Andrei Benguş-Lasnier", "Terence Gaffney", "Antoni Rangachev" ], "comment": "13 pages", "categories": [ "math.AG", "math.AC", "math.CV" ], "abstract": "We derive a multiplicity formula for the Milnor number of a reduced smoothable curve singularity generalizing a well-known formula due to L\\^e, Greuel and Teissier for complete intersection curves. We obtain a multiplicity characterization of Whitney equisingularity for families of locally smoothable curves.", "revisions": [ { "version": "v1", "updated": "2023-10-25T11:23:32.000Z" } ], "analyses": { "subjects": [ "32S15", "32S30", "32S60", "14C17", "13H15" ], "keywords": [ "milnor number", "multiplicity formula", "smoothable curve singularity generalizing", "complete intersection curves", "whitney equisingularity" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable" } } }