{ "id": "2310.15996", "version": "v1", "published": "2023-10-24T16:44:56.000Z", "updated": "2023-10-24T16:44:56.000Z", "title": "Thermodynamic formalism for entire transcendental maps with hyperbolic Baker Domains", "authors": [ "Adrián Esparza-Amador", "Irene Inoquio-Renteria" ], "categories": [ "math.DS" ], "abstract": "We provide a version of a thermodynamic formalism of entire transcendental maps that exhibit Baker domains, denoted as $f_{\\ell, c}: \\mathbb C\\to \\mathbb C$ and defined by $f_{\\ell, c}(z)= c-(\\ell-1)\\log c+ \\ell z- e^z$, where $\\ell \\in \\mathbb N$, with $\\ell \\geq 2 $ and $c$ belongs to the disk $ D(\\ell, 1)$ in the complex plane. We show in particular the existence and uniqueness of conformal measures and that the Hausdorff dimension is the unique zero of the pressure function $t\\to P(t)$, for $t>1,$ where $J_r(f)$ is the radial Julia set.", "revisions": [ { "version": "v1", "updated": "2023-10-24T16:44:56.000Z" } ], "analyses": { "subjects": [ "37D35", "37F10" ], "keywords": [ "entire transcendental maps", "hyperbolic baker domains", "thermodynamic formalism", "radial julia set", "complex plane" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }