{ "id": "2310.15536", "version": "v1", "published": "2023-10-24T05:44:21.000Z", "updated": "2023-10-24T05:44:21.000Z", "title": "Non-smoothness of the fundamental solutions for Schrödinger equations with super-quadratic and spherically symmetric potential", "authors": [ "Keiichi Kato", "Wataru Nakahashi", "Yukihide Tadano" ], "comment": "11 pages", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "We study non-smoothness of the fundamental solution for the Schr\\\"{o}dinger equation with a spherically symmetric and super-quadratic potential in the sence that $V(x)\\geq C|x|^{2+\\varepsilon}$ at infinity with constants $C>0 $ and $\\varepsilon>0$. More precisely, we show the fundamental solution $E(t,x,y)$ does not belong to $C^{1}$ as a function of $(t,x,y)$.", "revisions": [ { "version": "v1", "updated": "2023-10-24T05:44:21.000Z" } ], "analyses": { "subjects": [ "35J10" ], "keywords": [ "fundamental solution", "spherically symmetric potential", "schrödinger equations", "study non-smoothness", "super-quadratic potential" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }