{ "id": "2310.13567", "version": "v1", "published": "2023-10-20T15:06:14.000Z", "updated": "2023-10-20T15:06:14.000Z", "title": "Mapping properties of Fourier transforms, revisited", "authors": [ "Dorothee D. Haroske", "Leszek Skrzypczak", "Hans Triebel" ], "categories": [ "math.FA" ], "abstract": "The paper deals with continuous and compact mappings generated by the Fourier transform between distinguished Besov spaces $B^s_p(\\mathbb{R}^n) = B^s_{p,p}(\\mathbb{R}^n)$, $1\\le p \\le \\infty$, and between Sobolev spaces $H^s_p(\\mathbb{R}^n)$, $1