{ "id": "2310.12846", "version": "v1", "published": "2023-10-19T15:57:10.000Z", "updated": "2023-10-19T15:57:10.000Z", "title": "Physical Information Neural Networks for Solving High-index Differential-algebraic Equation Systems Based on Radau Methods", "authors": [ "Jiasheng Chen", "Juan Tang", "Ming Yan", "Shuai Lai", "Kun Liang", "Jianguang Lu", "Wenqiang Yang" ], "categories": [ "math.NA", "cs.AI", "cs.NA" ], "abstract": "As is well known, differential algebraic equations (DAEs), which are able to describe dynamic changes and underlying constraints, have been widely applied in engineering fields such as fluid dynamics, multi-body dynamics, mechanical systems and control theory. In practical physical modeling within these domains, the systems often generate high-index DAEs. Classical implicit numerical methods typically result in varying order reduction of numerical accuracy when solving high-index systems.~Recently, the physics-informed neural network (PINN) has gained attention for solving DAE systems. However, it faces challenges like the inability to directly solve high-index systems, lower predictive accuracy, and weaker generalization capabilities. In this paper, we propose a PINN computational framework, combined Radau IIA numerical method with a neural network structure via the attention mechanisms, to directly solve high-index DAEs. Furthermore, we employ a domain decomposition strategy to enhance solution accuracy. We conduct numerical experiments with two classical high-index systems as illustrative examples, investigating how different orders of the Radau IIA method affect the accuracy of neural network solutions. The experimental results demonstrate that the PINN based on a 5th-order Radau IIA method achieves the highest level of system accuracy. Specifically, the absolute errors for all differential variables remains as low as $10^{-6}$, and the absolute errors for algebraic variables is maintained at $10^{-5}$, surpassing the results found in existing literature. Therefore, our method exhibits excellent computational accuracy and strong generalization capabilities, providing a feasible approach for the high-precision solution of larger-scale DAEs with higher indices or challenging high-dimensional partial differential algebraic equation systems.", "revisions": [ { "version": "v1", "updated": "2023-10-19T15:57:10.000Z" } ], "analyses": { "keywords": [ "solving high-index differential-algebraic equation systems", "physical information neural networks", "differential algebraic equation", "partial differential algebraic", "radau iia method" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }