{ "id": "2310.12030", "version": "v1", "published": "2023-10-18T15:14:17.000Z", "updated": "2023-10-18T15:14:17.000Z", "title": "Banach spaces of sequences arising from infinite matrices", "authors": [ "Arian Bërdëllima", "Naim L. Braha" ], "categories": [ "math.FA" ], "abstract": "Given an infinite matrix $M=(m_{nk})$ we study a family of sequence spaces $\\ell_M^p$ associated with it. When equipped with a suitable norm $\\|\\cdot\\|_{M,p}$ we prove some basic properties of the Banach spaces of sequences $(\\ell_M^p,\\|\\cdot\\|_{M,p})$. In particular we show that such spaces are separable and strictly/uniformly convex for a considerably large class of infinite matrices $M$ for all $p>1$. A special attention is given to the identification of the dual space $(\\ell_M^p )^*$. Building on the earlier works of Bennett and J\\\"agers, we extend and apply some classical factorization results to the sequence spaces $\\ell_M^p$.", "revisions": [ { "version": "v1", "updated": "2023-10-18T15:14:17.000Z" } ], "analyses": { "subjects": [ "46B45", "46B10", "46B20", "46B04", "46B03" ], "keywords": [ "infinite matrix", "banach spaces", "sequences arising", "sequence spaces", "special attention" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }