{ "id": "2310.11337", "version": "v1", "published": "2023-10-17T15:15:03.000Z", "updated": "2023-10-17T15:15:03.000Z", "title": "On the Northcott property for infinite extensions", "authors": [ "Martin Widmer" ], "categories": [ "math.NT" ], "abstract": "We start with a brief survey on the Northcott property for subfields of the algebraic numbers $\\Qbar$. Then we introduce a new criterion for its validity (refining the author's previous criterion), addressing a problem of Bombieri. We show that Bombieri and Zannier's theorem, stating that the maximal abelian extension of a number field $K$ contained in $K^{(d)}$ has the Northcott property, follows very easily from this refined criterion. Here $K^{(d)}$ denotes the composite field of all extensions of $K$ of degree at most $d$.", "revisions": [ { "version": "v1", "updated": "2023-10-17T15:15:03.000Z" } ], "analyses": { "subjects": [ "11R04", "11G50", "11R06", "11R20", "37P30" ], "keywords": [ "northcott property", "infinite extensions", "maximal abelian extension", "brief survey", "algebraic numbers" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }