{ "id": "2310.10866", "version": "v1", "published": "2023-10-16T22:26:21.000Z", "updated": "2023-10-16T22:26:21.000Z", "title": "The linear elasticity system under singular forces", "authors": [ "Alejandro Allendes", "Gilberto Campaña", "Enrique Otárola", "Abner J. Salgado" ], "categories": [ "math.NA", "cs.NA" ], "abstract": "We study the linear elasticity system subject to singular forces. We show existence and uniqueness of solutions in two frameworks: weighted Sobolev spaces, where the weight belongs to the Muckenhoupt class $A_2$; and standard Sobolev spaces where the integrability index is less than $d/(d-1)$; $d$ is the spatial dimension. We propose a standard finite element scheme and provide optimal error estimates in the $\\mathbf{L}^2$--norm. By proving well posedness, we clarify some issues concerning the study of generalized mixed problems in Banach spaces.", "revisions": [ { "version": "v1", "updated": "2023-10-16T22:26:21.000Z" } ], "analyses": { "subjects": [ "35R06", "65N12", "65N15", "74S05" ], "keywords": [ "singular forces", "linear elasticity system subject", "standard finite element scheme", "standard sobolev spaces", "optimal error estimates" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }