{ "id": "2310.10577", "version": "v1", "published": "2023-10-16T16:53:37.000Z", "updated": "2023-10-16T16:53:37.000Z", "title": "Uniqueness and nondegeneracy of solutions to $(-Δ)^su+ u=u^p$ in $\\mathbb{R}^N$ and in balls", "authors": [ "Mouhamed Moustapha Fall", "Tobias Weth" ], "comment": "15 pages", "categories": [ "math.AP" ], "abstract": "We prove that positive solutions $u\\in H^s(\\mathbb{R}^N)$ to the equation $(-\\Delta )^s u+ u=u^p$ in $\\mathbb{R}^N$ are unique up to translations and nondegenerate, for all $s\\in (0,1)$, $N\\geq 1$ and $p>1$ is strictly smaller than the critical Sobolev exponent. This generalizes a result of Frank, Lenzmann and Silvestre \\cite{FLS}, where the same uniqueness and nondegeneracy is proved for solutions with Morse index 1. Letting $B$ be the unit centered ball and $\\lambda_1(B)$ the first Dirichlet eigenvalue of the fractional Laplacian $(-\\Delta )^s$, we also prove that positive solutions to $(-\\Delta )^s u+\\lambda u=u^p$ in ${B}$ with $u=0$ on $\\mathbb{R}^N\\setminus B$, are unique and nondegenerate for any $\\lambda> -\\lambda_1(B)$. This extends the very recent results in \\cite{DIS-1,Azahara-Parini} which provide uniqueness and nondegeneracy of least energy solutions.", "revisions": [ { "version": "v1", "updated": "2023-10-16T16:53:37.000Z" } ], "analyses": { "keywords": [ "uniqueness", "nondegeneracy", "positive solutions", "first dirichlet eigenvalue", "nondegenerate" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }