{ "id": "2310.10223", "version": "v1", "published": "2023-10-16T09:33:06.000Z", "updated": "2023-10-16T09:33:06.000Z", "title": "A Laurent phenomenon for the Cayley plane", "authors": [ "Oliver Daisey", "Tom Ducat" ], "comment": "19 pages, 6 figures", "categories": [ "math.AG" ], "abstract": "We describe a Laurent phenomenon for the Cayley plane, which is the homogeneous variety associated to the cominiscule representation of $E_6$. The corresponding Laurent phenomenon algebra has finite type and appears in a natural sequence of LPAs indexed by the $E_n$ Dynkin diagrams for $n \\leq 6$. We conjecture the existence of a further finite type LPA, associated to the Freudenthal variety of type $E_7$.", "revisions": [ { "version": "v1", "updated": "2023-10-16T09:33:06.000Z" } ], "analyses": { "keywords": [ "cayley plane", "corresponding laurent phenomenon algebra", "finite type lpa", "dynkin diagrams", "natural sequence" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable" } } }