{ "id": "2310.10194", "version": "v1", "published": "2023-10-16T09:01:47.000Z", "updated": "2023-10-16T09:01:47.000Z", "title": "Regularizing Effect for a Class of Maxwell-Schrödinger Systems", "authors": [ "Ayana Pinheiro de Castro Santana", "Luís Henrique de Miranda" ], "categories": [ "math.AP" ], "abstract": "In this paper we prove the existence and regularity of weak solutions for the following system \\begin{align*} \\begin{cases} -\\mbox{div}(M(x)\\nabla u) + g(x,u,v) = f \\ \\ \\mbox{in} \\ \\ \\Omega\\\\ -\\mbox{div}(M(x)\\nabla v) = h(x,u,v) \\ \\ \\mbox{in} \\ \\ \\Omega\\\\ \\ \\ \\ \\ \\ u=v=0 \\ \\ \\mbox{on} \\ \\ \\partial \\Omega, \\end{cases} \\end{align*} where $\\Omega$ is an open bounded subset of $\\mathbb{R}^N$, for $N>2$, $f\\in L^m(\\Omega)$, where $m>1$ and $h,\\ g$ are two Carath\\'eodory functions. We prove that under appropriate conditions on $g$ and $h$ there exist solutions which escape the predicted regularity by the classical Stampacchia's theory causing the so-called regularizing effect.", "revisions": [ { "version": "v1", "updated": "2023-10-16T09:01:47.000Z" } ], "analyses": { "subjects": [ "35B65", "35D99" ], "keywords": [ "regularizing effect", "maxwell-schrödinger systems", "open bounded subset", "weak solutions", "caratheodory functions" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }