{ "id": "2310.09973", "version": "v1", "published": "2023-10-15T22:33:21.000Z", "updated": "2023-10-15T22:33:21.000Z", "title": "Extending partial edge colorings", "authors": [ "Pál Bärnkopf", "Ervin Győri" ], "categories": [ "math.CO" ], "abstract": "We consider the problem of extending partial edge colorings of (iterated) cartesian products of even cycles and paths, focusing on the case when the precolored edges constitute a matching. We prove the conjecture of Casselgren, Granholm and Petros that a precolored distance 3 matching in the Cartesian product of two even cycles can be extended to a 4-coloring of the edge set of the whole graph. Actually, a generalization for the Cartesian product of two bipartite graphs is proved.", "revisions": [ { "version": "v1", "updated": "2023-10-15T22:33:21.000Z" } ], "analyses": { "keywords": [ "extending partial edge colorings", "cartesian product", "edge set", "bipartite graphs", "precolored edges constitute" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }