{ "id": "2310.08422", "version": "v1", "published": "2023-10-12T15:43:24.000Z", "updated": "2023-10-12T15:43:24.000Z", "title": "Pell and Pell-Lucas numbers as difference of two repdigits", "authors": [ "Bilizimbeye Edjeou", "Bernadette Faye" ], "comment": "to appear in Afrika Matematika", "categories": [ "math.NT" ], "abstract": "Let $ \\{P_{n}\\}_{n\\geq 0} $ be the sequence of Pell numbers defined by $ P_0=0 $, $ P_1 =1$ and $ P_{n+2}= 2P_{n+1} +P_n$ for all $ n\\geq 0 $ and let $ \\{Q_{n}\\}_{n\\geq 0} $ be its companion sequence, the Pell-Lucas numbers defined by $ Q_0=Q_1 =2$ and $ Q_{n+2}= 2Q_{n+1} +Q_n$ for all $ n\\geq 0 $ . In this paper, we find all Pell and Pell-Lucas numbers which can be written as difference of two repdigits. It is shown that the largest Pell and Pell-Lucas numbers which can be written as difference of two repdigits are $$P_6=70= 77-7 \\quad\\quad \\hbox{and} \\quad\\quad Q_7 = 478=555-77.$$", "revisions": [ { "version": "v1", "updated": "2023-10-12T15:43:24.000Z" } ], "analyses": { "keywords": [ "pell-lucas numbers", "difference", "largest pell" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }