{ "id": "2310.08264", "version": "v1", "published": "2023-10-12T12:11:59.000Z", "updated": "2023-10-12T12:11:59.000Z", "title": "Classification of solutions of higher order critical Choquard equation", "authors": [ "Genggeng Huang", "Yating Niu" ], "comment": "31 pages", "categories": [ "math.AP" ], "abstract": "In this paper, we classify the solutions of the following critical Choquard equation \\[ (-\\Delta)^{\\frac{n}{2}} u(x) = \\int_{\\mathbb{R}^n} \\frac{e^{\\frac{2n- \\mu}{2}u(y)}}{|x-y|^{\\mu}}dy e^{\\frac{2n- \\mu}{2}u(x)}, \\ \\text{in} \\ \\mathbb{R}^n, \\] where $ 0<\\mu < n$, $ n\\ge 2$. Suppose $ u(x) = o(|x|^2) \\ \\text{at} \\ \\infty $ for $ n \\geq 3$ and satisfies \\[ \\int_{\\mathbb{R}^n}e^{\\frac{2n- \\mu}{2}u(y)} dy < \\infty, \\ \\int_{\\mathbb{R}^n}\\int_{\\mathbb{R}^n}\\frac{e^{\\frac{2n- \\mu}{2}u(y)}}{|x-y|^{\\mu}} e^{\\frac{2n- \\mu}{2}u(x)} dy dx < \\infty. \\] By using the method of moving spheres, we show that the solutions have the following form \\[ u(x)= \\ln \\frac{C_1(\\varepsilon)}{|x-x_0|^2 + \\varepsilon^2}. \\]", "revisions": [ { "version": "v1", "updated": "2023-10-12T12:11:59.000Z" } ], "analyses": { "subjects": [ "35J30", "35R11", "31B10" ], "keywords": [ "higher order critical choquard equation", "classification", "dy dx", "moving spheres" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }