{ "id": "2310.07685", "version": "v1", "published": "2023-10-11T17:35:55.000Z", "updated": "2023-10-11T17:35:55.000Z", "title": "Moderate Deviations for the Capacity of the Random Walk range in dimension four", "authors": [ "Arka Adhikari", "Izumi Okada" ], "comment": "52 pages", "categories": [ "math.PR" ], "abstract": "In this paper, we find a natural four dimensional analog of the moderate deviation results for the capacity of the random walk, which corresponds to Bass, Chen and Rosen \\cite{BCR} concerning the volume of the random walk range for $d=2$. We find that the deviation statistics of the capacity of the random walk can be related to the following constant of generalized Gagliardo-Nirenberg inequalities, \\begin{equation*} \\label{eq:maxineq} \\inf_{f: \\|\\nabla f\\|_{L^2}<\\infty} \\frac{\\|f\\|^{1/2}_{L^2} \\|\\nabla f\\|^{1/2}_{L^2}}{ [\\int_{(\\mathbb{R}^4)^2} f^2(x) G(x-y) f^2(y) \\text{d}x \\text{d}y]^{1/4}}. \\end{equation*}", "revisions": [ { "version": "v1", "updated": "2023-10-11T17:35:55.000Z" } ], "analyses": { "subjects": [ "60F15", "60G50" ], "keywords": [ "random walk range", "moderate deviation results", "dimensional analog", "deviation statistics", "generalized gagliardo-nirenberg inequalities" ], "note": { "typesetting": "TeX", "pages": 52, "language": "en", "license": "arXiv", "status": "editable" } } }