{ "id": "2310.07317", "version": "v1", "published": "2023-10-11T09:05:47.000Z", "updated": "2023-10-11T09:05:47.000Z", "title": "Fuss-Catalan Triangles", "authors": [ "Francesca Aicardi" ], "comment": "6 pages, 2 figures", "categories": [ "math.CO", "math.GN" ], "abstract": "For each $p>0$ we define by recurrence a triangle $T^p(n,k)$ whose rows sum to the Fuss-Catalan numbers $ \\frac{1}{p n+1}\\binom{pn+1}{n}$, generalizing the known Catalan triangle corresponding to the case $p=2$. The proof is given for $p=4$. Moreover, for some small values of $p$, the signed sums turn out to be known sequences.", "revisions": [ { "version": "v1", "updated": "2023-10-11T09:05:47.000Z" } ], "analyses": { "subjects": [ "05A10", "05A19", "57M50" ], "keywords": [ "fuss-catalan triangles", "signed sums turn", "small values", "rows sum", "fuss-catalan numbers" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }