{ "id": "2310.06477", "version": "v1", "published": "2023-10-10T09:47:07.000Z", "updated": "2023-10-10T09:47:07.000Z", "title": "Newton-Okounkov polytopes of type $A$ flag varieties of small ranks arising from cluster structures", "authors": [ "Yunhyung Cho", "Naoki Fujita", "Akihiro Higashitani", "Eunjeong Lee" ], "categories": [ "math.AG", "math.CO", "math.RT" ], "abstract": "A flag variety is a smooth projective homogeneous variety. In this paper, we study Newton-Okounkov polytopes of the flag variety $Fl(\\mathbb{C}^4)$ arising from its cluster structure. More precisely, we present defining inequalities of such Newton-Okounkov polytopes of $Fl(\\mathbb{C}^4)$. Moreover, we classify these polytopes, establishing their equivalence under unimodular transformations.", "revisions": [ { "version": "v1", "updated": "2023-10-10T09:47:07.000Z" } ], "analyses": { "subjects": [ "14M15", "05E10", "14M25", "13F60" ], "keywords": [ "flag variety", "cluster structure", "small ranks arising", "study newton-okounkov polytopes", "smooth projective homogeneous variety" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }