{ "id": "2310.03471", "version": "v1", "published": "2023-10-05T11:27:45.000Z", "updated": "2023-10-05T11:27:45.000Z", "title": "On the measure concentration of infinitely divisible distributions", "authors": [ "Jing Zhang", "Ze-Chun Hu", "Wei Sun" ], "categories": [ "math.PR" ], "abstract": "Let ${\\cal I}$ be the set of all infinitely divisible random variables\\ with finite second moments, ${\\cal I}_0=\\{X\\in{\\cal I}:{\\rm Var}(X)>0\\}$, $P_{\\cal I}=\\inf_{X\\in{\\cal I}}P\\{|X-E[X]|\\le \\sqrt{{\\rm Var}(X)}\\}$ and $P_{{\\cal I}_0}=\\inf_{X\\in{\\cal I}_0} P\\{|X-E[X]|< \\sqrt{{\\rm Var}(X)}\\}$. We prove that $P_{{\\cal I}}\\ge P_{{\\cal I}_0}>0$. Further, we use geometric and Poisson distributions to investigate the values of $P_{\\cal I}$ and $P_{{\\cal I}_0}$. In particular, we show that $P_{\\cal I}\\le e^{-1}\\sum_{k=0}^{\\infty}\\frac{1}{2^{2k}(k!)^2}\\approx 0.46576$ and $P_{{\\cal I}_0}\\le e^{-1}\\approx 0.36788$.", "revisions": [ { "version": "v1", "updated": "2023-10-05T11:27:45.000Z" } ], "analyses": { "subjects": [ "60E07", "60E15", "62G32" ], "keywords": [ "infinitely divisible distributions", "measure concentration", "finite second moments", "poisson distributions", "infinitely divisible random" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }