{ "id": "2310.02482", "version": "v1", "published": "2023-10-03T23:17:19.000Z", "updated": "2023-10-03T23:17:19.000Z", "title": "Strengthening the union-closed sets conjecture", "authors": [ "Christopher Bouchard" ], "categories": [ "math.CO" ], "abstract": "A family of sets $\\mathcal{F}$ is union-closed if $X,Y \\in \\mathcal{F} \\implies X \\cup Y \\in \\mathcal{F}$. Let $\\mathcal{A} \\neq \\{\\emptyset\\}$ be a finite union-closed family of sets. The union-closed sets conjecture, also called Frankl's conjecture, states that there exists an element of $\\bigcup_{A \\in \\mathcal{A}} A $ that appears in at least $\\frac{|\\mathcal{A}|}{2}$ members of $\\mathcal{A}$. Let $\\mathcal{A}_B=\\{A\\in\\mathcal{A}|A \\cap B = B\\}$ and $\\mathcal{A}_{\\bar{B}}=\\{A\\in\\mathcal{A}|A \\cap B = \\emptyset\\}$ where $B \\subseteq \\bigcup_{A \\in \\mathcal{A}}A$. Further, let ${S \\choose k}$ be the set of all $k$-element subsets of a set $S$, and $[n]=\\{1,2,\\cdots,n\\}=\\bigcup_{A \\in \\mathcal{A}}A$. The union-closed sets conjecture can then be stated as $\\exists B \\in {[n] \\choose 1}$ $|\\mathcal{A}_{B}| \\geq |\\mathcal{A}_{\\bar{B}}|$. With this notation, we introduce the stronger conjecture that $\\forall x \\in [n]$ $\\exists B \\in {[n] \\choose n+1-x}$ $|\\mathcal{A}_B| \\geq |\\mathcal{A}_{\\bar{B}}|$, and we prove the new conjecture for $x \\in [\\lceil \\frac{n}{3} \\rceil + 1]$, where $\\lceil \\frac{n}{3} \\rceil$ is the smallest integer greater than or equal to $\\frac{n}{3}$. Other related conjectures are investigated.", "revisions": [ { "version": "v1", "updated": "2023-10-03T23:17:19.000Z" } ], "analyses": { "keywords": [ "union-closed sets conjecture", "smallest integer greater", "element subsets", "frankls conjecture", "stronger conjecture" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }