{ "id": "2310.01923", "version": "v1", "published": "2023-10-03T09:59:27.000Z", "updated": "2023-10-03T09:59:27.000Z", "title": "Latin squares without proper subsquares", "authors": [ "Jack Allsop", "Ian M. Wanless" ], "categories": [ "math.CO" ], "abstract": "A $d$-dimensional Latin hypercube of order $n$ is a $d$-dimensional array containing symbols from a set of cardinality $n$ with the property that every axis-parallel line contains all $n$ symbols exactly once. We show that for $(n, d) \\notin \\{(4,2), (6,2)\\}$ with $d \\geq 2$ there exists a $d$-dimensional Latin hypercube of order $n$ that contains no $d$-dimensional Latin subhypercube of any order in $\\{2,\\dots,n-1\\}$. The $d=2$ case settles a 50 year old conjecture by Hilton on the existence of Latin squares without proper subsquares.", "revisions": [ { "version": "v1", "updated": "2023-10-03T09:59:27.000Z" } ], "analyses": { "subjects": [ "05B15" ], "keywords": [ "proper subsquares", "latin squares", "dimensional latin hypercube", "axis-parallel line contains", "dimensional array containing symbols" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }