{ "id": "2310.01670", "version": "v1", "published": "2023-10-02T22:02:08.000Z", "updated": "2023-10-02T22:02:08.000Z", "title": "Asymptotic behavior of Wasserstein distance for weighted empirical measures of diffusion processes on compact Riemannian manifolds", "authors": [ "Jie-Xiang Zhu" ], "categories": [ "math.PR" ], "abstract": "Let $(X_t)_{t \\geq 0}$ be a diffusion process defined on a compact Riemannian manifold, and for $\\alpha > 0$, let $$ \\mu_t^{(\\alpha)} = \\frac{\\alpha}{t^\\alpha} \\int_{0}^{t} \\delta_{X_s} \\, s^{\\alpha - 1} \\mathrm{d} s $$ be the associated weighted empirical measure. We investigate asymptotic behavior of $\\mathbb{E}^\\nu \\big[ \\mathrm{W}_2^2(\\mu_t^{(\\alpha)}, \\mu) \\big]$ for sufficient large $t$, where $\\mathrm{W}_2$ is the quadratic Wasserstein distance and $\\mu$ is the invariant measure of the process. In the particular case $\\alpha = 1$, our result sharpens the limit theorem achieved in [26]. The proof is based on the PDE and mass transportation approach developed by L. Ambrosio, F. Stra and D. Trevisan.", "revisions": [ { "version": "v1", "updated": "2023-10-02T22:02:08.000Z" } ], "analyses": { "keywords": [ "compact riemannian manifold", "weighted empirical measure", "diffusion process", "asymptotic behavior", "quadratic wasserstein distance" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }