{ "id": "2310.01658", "version": "v1", "published": "2023-10-02T21:43:13.000Z", "updated": "2023-10-02T21:43:13.000Z", "title": "Some Equations Involving the Gamma Function", "authors": [ "Sebastian Eterović", "Adele Padgett" ], "comment": "22 pages, 2 figures", "categories": [ "math.NT", "math.CV", "math.LO" ], "abstract": "Let $V\\subseteq\\mathbb{C}^{2n}$ be an algebraic variety with no constant coordinates and with a dominant projection onto the first $n$ coordinates. We show that the intersection of $V$ with the graph of the $\\Gamma$ function is Zariski dense in $V$.", "revisions": [ { "version": "v1", "updated": "2023-10-02T21:43:13.000Z" } ], "analyses": { "subjects": [ "30C15", "33B15", "30D35", "32A60" ], "keywords": [ "gamma function", "zariski dense", "algebraic variety", "dominant projection" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable" } } }